Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38639905

RESUMEN

Phytoremediation using fast-growing woody plants assisted by plant growth-promoting bacteria (PGPB) on cadmium (Cd)-contaminated sites is considered a promising technique; however, its remediation efficiency is still affected by multiple factors. In this study, the mining areas' soil conditions were simulated with different Cd addition levels (0, 3, 6, 9 mg kg-1) in order to investigate the response strategy to Cd stress of fast-growing economic tree species, slash pine (Pinus elliottii), and the effects of inoculation with the PGPB strain Herbaspirillum sp. YTG72 on the physiological activity and Cd accumulation of plants. The main results showed that there were significant (p < 0.05) increases in contents of chlorophyll and nutrient elements (P, K, Ca, and Mg) at low Cd addition level (3 mg kg-1) compared to non-Cd addition treatment. When the additive amount of Cd increased, the growth of plants was severely inhibited and the content of proline was increased, as well as Cd in plants. Besides, the ratios of K:P, Ca:P, and Mg:P in plants were negatively correlated with the contents of Cd in plants and soils. Inoculation of P. elliottii with the PGPB strain Herbaspirillum sp. YTG72 improved the physiological functions of the plants under Cd stress and activated the antioxidant system, reduced the accumulation of proline, and decreased the ratios of K:P, Ca:P, and Mg:P in plant. More importantly, planting P. elliottii in Cd-contaminated soil could significantly (p < 0.05) reduce the Cd content in the rhizosphere soil, and furthermore, inoculation treatment could promote the reduction of soil Cd content and increased the accumulation of Cd by root. The results of the present study emphasized the Cd response mechanism of P. elliottii based on multifaceted regulation, as well as the feasibility of strain Herbaspirillum sp. YTG72 assisted P. elliottii for the remediation on Cd-contaminated sites.

2.
J Environ Manage ; 356: 120701, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531134

RESUMEN

In the context of the "United Nations Decade on Ecosystem Restoration", optimizing spatiotemporal arrangements for ecological restoration is an important approach to enhancing overall socioecological benefits for sustainable development. However, against the background of ecological degradation caused by the human use of most natural resources at levels that have approached or exceeded the safe and sustainable boundaries of ecosystems, it is key to explain how to optimize ecological restoration by classified management and optimal total benefits. In response to these issues, we combined spatial heterogeneity and temporal dynamics at the national scale in China to construct five ecological performance regimes defined by indicators that use planetary boundaries and ecological pressures which served as the basis for prioritizing ecological restoration areas and implementing zoning control. By integrating habitat conservation, biodiversity, water supply, and restoration cost constraints, seven ecological restoration scenarios were simulated to optimize the spatial layout of ecological restoration projects (ERPs). The results indicated that the provinces with unsustainable freshwater use, climate change, and land use accounted for more than 25%, 66.7%, and 25%, respectively, of the total area. Only 30% of the provinces experienced a decrease in environmental pressure. Based on the ecological performance regimes, ERP sites spanning the past 20 years were identified, and more than 50% of the priority areas were clustered in regime areas with increased ecological stress. As the restoration area targets doubled (40%) from the baseline (20%), a multi-objective scenario presents a trade-off between expanded ERPs in areas with highly beneficial effects and minimal restoration costs. In conclusion, a reasonable classification and management regime is the basis for targeted restoration. Coordinating multiple objectives and costs in ecological restoration is the key to maximizing socio-ecological benefits. Our study offered new perspectives on systematic and sustainable planning for ecological restoration.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Biodiversidad , China , Abastecimiento de Agua
3.
Recent Pat Anticancer Drug Discov ; 19(3): 316-327, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37132310

RESUMEN

BACKGROUND: Liver cancer (LC) is one of China's most common malignant tumors, with a high mortality rate, ranking third leading cause of death after gastric and esophageal cancer. Recent patents propose the LncRNA FAM83H-AS1 has been verified to perform a crucial role in the progression of LC. LncRNA FAM83H-AS1 has been verified to perform a crucial role in the progression of LC. However, the concrete mechanism remains to be pending further investigation. OBJECTIVE: This study aimed to explore the embedding mechanism of FAM83H-AS1 molecules in terms of radio sensitivity of LC and provide potentially effective therapeutic targets for LC therapy. METHODS: Quantitative real-time PCR (qRT-PCR) was conducted to measure the transcription levels of genes. Proliferation was determined via CCK8 and colony formation assays. Western blot was carried out to detect the relative protein expression. A xenograft mouse model was constructed to investigate the effect of LncRNA FAM83H-AS1 on tumor growth and radio-sensitivity in vivo. RESULTS: The levels of lncRNA FAM83H-AS1 were remarkably increased in LC. Knockdown of FAM83H-AS1 inhibited LC cell proliferation and colony survival fraction. Deletion of FAM83H-AS1 increased the sensitivity of LC cells to 4 Gy of X-ray radiation. In the xenograft model, radiotherapy combined with FAM83H-AS1 silencing significantly reduced tumor volume and weight. Overexpression of FAM83H reversed the effects of FAM83H-AS1 deletion on proliferation and colony survival fraction in LC cells. Moreover, the over-expressing of FAM83H also restored the tumor volume and weight reduction caused by the knockdown of FAM83H-AS1 or radiation in the xenograft model. CONCLUSION: Knockdown of lncRNA FAM83H-AS1 inhibited LC growth and enhanced radiosensitivity in LC. It has the potential to be a promising target for LC therapy.


Asunto(s)
Neoplasias Esofágicas , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Animales , Ratones , ARN Largo no Codificante/genética , Neoplasias Esofágicas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Gástricas/metabolismo , Patentes como Asunto , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , Proliferación Celular/genética , Proteínas , Línea Celular Tumoral , Movimiento Celular/genética
4.
Infect Med (Beijing) ; 2(3): 195-201, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38073887

RESUMEN

Background: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever caused by a tick-borne bunyavirus SFTSV with case fatality up to 30%. The reactivation of Epstein-Barr virus (EBV) has been proven to occur in individuals with various immune suppression conditions. Methods: Here, we diagnosed 22 SFTSV infected patients with PCR in a hospital in Shandong Province, China in 2020. To understand the consequences of SFTSV infection leading to EBV reactivation, we examined EBV reactivation in SFTSV-infected patients with PCR and RT-PCR. Results: We found that EBV was reactivated in 18.2% (4/22) of SFTS patients, suggesting that EBV reactivation is common in SFTS patients. Compared with SFTS patients without EBV reactivation, SFTS patients with EBV-reactivation had a significantly lower median level of serum albumin (32.45 g/L vs. 26.95 g/L, p = 0.03) and a significantly higher median number of urine red blood cells (0 cells/µL vs. 9 cells/µL, p = 0.04). Conclusion: SFTS infection can reactivate EBV in patients, which may make the clinical condition of patients worsen.

5.
J Agric Food Chem ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930271

RESUMEN

Glucose oxidase (GOX) is a representative compound found in most insect saliva that can suppress plant-defensive responses. However, little is known about the origin and role of GOX in the crucifer-specialized pest Plutella xylostella. In this study, we showed obvious regurgitation from the larval gut of P. xylostella and identified abundant peptides highly similar to known GOX. Three PxGOX genes were verified with PxGOX2 preferentially expressed in the gut. The heterologously expressed PxGOX2 confirmed its function to be a GOX, and it was detected in plant wounds together with the gut regurgitant. Further experiments revealed that PxGOX2 functioned as an effector and may suppress defensive responses in plant through the production of H2O2, which modulates levels of antagonistic salicylic acid and jasmonic acid. However, excessive H2O2 in the host plant may be neutralized by peroxidase, thus forming defensive feedback. Our findings provided new insights into understanding the GOX-mediated insect-plant interactions.

6.
J Environ Manage ; 348: 119267, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37862896

RESUMEN

Understanding the magnitude and spatial distribution of ecological restoration requires a precise assessment of the beneficial contributions of nature to people. However, where the restoration areas should be located and whether the natural contribution of a compensation area can satisfy people's needs in the context of ecological degradation remain unclear. To address these issues, we selected the Qinghai-Tibet Plateau as the study areas, utilizing the offset portfolio analyzer and locator model to identify the compensation sites that offset the losses of ecosystem services and biodiversity resulting from ecological degradation. These compensation sites were developed through two offset types: restoration and protection. Then, based on the offset sites, we assessed nature's contribution to people (NCP) under the current status and future scenarios in terms of various aspects, including the habitat (NCP1), climate change (NCP4), and water quantity and flow regulation (NCP6). This study found that the area impacted by agricultural development was 7.15 × 105 ha, and the required compensation area was 5.5 × 106 ha under the current status. The ratio of the impacted area to the required area was approximately 7.0 in the future scenarios. The average habitat qualities were 0.14 and 0.30, while the mean NCP1 values were 2.69 and 0.51 in the protection and restoration offset sites, respectively. Moreover, based on the offset sites, the high-value contributions in NCP4 accounted for 18.64%-22.69% and 38.87%-46.17% of the total offset sites in terms of the restoration and protection offset types, respectively. Additionally, the estimated high-value contributions in NCP6 accounted for 58.35%-59.02% and 84.40%-95.86% of the total offset sites in the restoration and protection offset types, respectively. Our findings highlighted the significance of ecological restoration in showcasing the role of NCPs. These results could aid conservation managers in developing more targeted ecological strategies to enhance human well-being.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Tibet , Cambio Climático , China
7.
Heliyon ; 9(7): e17661, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37539295

RESUMEN

Endophyte-assisted phytoremediation is an emerging technique for soil heavy metals (HMs) remediation and has become a research focus in the world because of the benefits of endophytes on plant growth and uptake of HMs. In this study, multifunctional endophytic bacteria strains were isolated and screened, and the feasibility of these strains for soil cadmium (Cd) remediation was investigated by soil incubation experiments and pot experiments. All endophytic bacteria were isolated from the roots of woody plants grown on Cd-contaminated soil. Seven endophytic bacteria strains had capacities to tolerate Cd toxicity and produce siderophores, and sequence analysis of the 16S rRNA gene classified these strains as belonging to the genera Burkholderia, Pseudomonas, Pantoea, and Herbaspirillum. All strains were able to produce hydroxamate siderophores (32.40%-91.49%) and had three or more plant growth promoting properties such as phosphorus solubilization, nitrogen fixation, indole acetic acid and 1-aminocyclopropane-1-carboxylate deaminase production. They were all strongly resistant to Cd2+ toxicity, with the minimum inhibitory concentration in LB medium ranging from 1.5 mM to 9.0 mM. Except for strain Burkholderia contaminans JLS17, other strains showed decreasing removal rates within continuously elevated Cd2+ concentration of 10-100 mg L-1. Compared with the uninoculated treatment, the inoculation of strains B.contaminans JLS17, Pseudomonas lurida JLS32, and Pantoea endophytica JLS50 effectively increased the concentration of acid-soluble Cd and decreased the concentration of reducible, oxidizable, and residual Cd in the soils of different Cd contamination levels. In pot experiments, inoculation of strains JLS17 and YTG72 significantly (p < 0.05) promoted the growth of above-ground parts and root system of slash pine (Pinus elliottii) under Cd stress. This study provides a valuable biological resource for endophyte-assisted phytoremediation and a theoretical basis for the application of endophytic bacteria for remediation of Cd-contaminated soil.

8.
Ambio ; 52(12): 1939-1951, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37392251

RESUMEN

China prioritizes ecological civilization construction and embraces the concept of "lucid waters and lush mountains are invaluable assets." Great achievements have been made in ecological protection and restoration through implementing a series of policies and projects. This paper reviews the history of ecological restoration in China and the current development of the "integrated protection and restoration project of mountains, rivers, forests, farmlands, lakes, grasslands, and deserts (IPRP)." Furthermore, the characteristics of IPRP were systematically elaborated from the perspectives of the ecological civilization thought, the policy management, and the key scientific issues. Also, the current achievements were summarized in the fields of national ecological space management, biodiversity conservation, and ecological protection and restoration. Existing challenges in management policy, scientific issues, and engineering practices were highlighted. Future perspectives include ecological space control, nature-based Solutions, biodiversity big data platform, modern techniques, and value realization mechanisms of ecological products.


Asunto(s)
Pradera , Lagos , Granjas , Bosques , China
9.
Sci Total Environ ; 896: 165223, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37392886

RESUMEN

A robust and resilient nitrogen (N) flow system can effectively ensure consistent food production and consumption activities while preserving environmental quality. In this study, we constructed an indicator system to evaluate N flow system resilience including food production and consumption, at the county scale on the Qinghai-Tibet Plateau (QTP) from 1998 to 2018. The subsystem coupling coordination degree (CCD) and the effect of N losses on N flow system resilience were subsequently explored. The results indicated that despite the overall N flow system resilience remaining low and exhibiting spatiotemporal disparities from 1998 to 2018, over 90 % of the counties experienced improvements. High resilience areas (>0.15) were mainly concentrated in some counties in Sichuan Province, where N losses were positively correlated with system resilience. The level of resilience depended on agricultural and livestock development, and the CCD of subsystems was also high (>0.5) in this region, with the most balanced environmental and socioeconomic development. The low system resilience areas were concentrated in the eastern part of the QTP, where human activities caused substantial disturbances. The fragmentation of the agro-pastoral system coupled with the low system resilience of the food production and driving pressure subsystems led to low CCD between subsystems. In contrast, the western regions, characterized by a stable food production system, high food self-sufficiency, and weak dependence on external systems, showed a higher degree of system resilience and resistance. Our findings provide a reference for N resource management and policy formulation for food production and consumption in the agricultural and pastoral areas of the QTP.

10.
Plants (Basel) ; 12(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050140

RESUMEN

Cytoplasmic male sterility (CMS) is the main mechanism employed to utilize the heterosis of Brassica napus. CMS three-line rapeseed hybrids have dramatically enhanced yield and brought about the global revolution of hybrid varieties, replacing conventional crop varieties. Over the last half century, China has led the development of hybrid Brassica napus varieties. Two sterile lines, polima (pol) and shaan 2A, were of particular importance for the establishment of three-line hybrid systems in rapeseed, which has opened up a new era of heterosis utilization. However, in current breeding practices, it takes up to three years to identify the restorer or maintainer relationship and the cytoplasmic type of any inbred material. This greatly affects the breeding speed of new varieties and inhibits the rapid development of the rapeseed industry. To address this problem, we developed a set of molecular markers for the identification of fertile cytoplasmic gene N and sterile cytoplasmic gene S, as well as for the fertile nucleus gene R and sterile nucleus gene r, based on differences in the gene sequences between the CMS line, maintainer line and restorer line of Brassica napus. Combining these markers can accurately identify the CMS line, maintainer and restorer of both the pol and shaan systems, as well as their hybrids. These markers can not only be used to identify of the maintainer and restorer relationship of inbred materials; they can also be used as general molecular markers to identify the CMS-type hybrid purity of pol and shaan systems.

11.
Front Plant Sci ; 14: 1051881, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798709

RESUMEN

Fencing is an essential measure for the rehabilitation and conservation of grasslands on the Qinghai-Tibet Plateau. However, its construction could change the distribution and migration of wildlife, thus affecting the integrity of the ecological networks for local wild animal movement. It is of great significance to quantify the potential impact of fencing on ecological network connectivity associated with land-use changes at regional scale. In this study, taking the northern Tibetan Plateau as the study area, we explored the ecological network change using circuit theory approach under different scenarios at county scale. Among them, this study set up four different scenarios according to the economic growth rate, population growth rate and the sustainable development of society and environment. The results showed that: 1) with increased grazing intensity and enhanced human activities from 1990 to 2015, the grasslands of the northern Tibetan Plateau were greatly degraded, most of which was converted into the barren land, and the conversion proportion was as high as 90.84%, which lead to a decreasing trend of the current density of ecological network in most counties and deterioration of ecological connectivity; 2) fencing construction has reduced regional current density, while fencing intensity is positively correlated with current density loss at county scale. Among them, the counties with serious current density loss were distributed in the northwest and southeast regions. The maximum loss ratio is 39.23%; 3) under four different future land use scenarios, coordinated economic, social and environmental development will have a positive effect on the ecological network. The results of the study have important ecological significance for developing reasonable conservation measures for grassland restoration, protecting wildlife, and maintaining regional ecological balance.

12.
Geohealth ; 7(3): e2022GH000737, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36852182

RESUMEN

The N footprint is considered as an indicator of potential environmental damage from N. Quantitative analysis of N footprint distribution, sources and drivers can help mitigate its negative impacts and promote sustainable N management. In this study, we constructed a city-scale food N footprint (FNF) framework for the Qinghai-Tibet Plateau (QTP) using a N mass balance approach. We quantitatively analyzed the FNF during food production and consumption on the QTP from 1998 to 2018. We used the logarithmic mean Divisa index decomposition method to analyze the driving forces of the FNF, and the decoupling of the FNF. The results showed that the per capita FNF of the QTP increased from 24.92 kg N cap-1 in 1998 to 27.70 kg N cap-1 in 2018, and the total FNF increased by 35.11% from 1998 to 2018. The spatial distribution of the FNF was uneven, with N losses from crop production and animal production being the leading contributing source to the FNF (86%). Economic development and urbanization were the main driving forces behind the FNF increase, while N consumption intensity inhibited the growth of the FNF. With the rapid growth of GDP, the FNF in the eastern part of the QTP grew relatively slowly, indicating a gradual decoupling of the FNF from economic development. To reconcile the relationship between socioeconomic drivers and the FNF, it is necessary to focus on coupling relationships between subsystems within the food production and consumption system to promote N recycling.

13.
J Environ Manage ; 326(Pt B): 116795, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36442330

RESUMEN

Nitrogen (N) losses from crop-livestock production is a major threat to the environment and human health at regional, national and global scales. A comprehensive understanding of the sources, spatiotemporal distribution and drivers of N losses is of great significance for mitigating its negative impacts and promoting N sustainable management. Here, we used the county-scale N flow model to quantitatively analyze the N losses and their driving forces of crop-livestock production on the Qinghai-Tibet Plateau (QTP). Between 2000 and 2018, the total N losses increased for more than 79% of counties on the QTP. The hotspot areas accounted for over 80% of total N losses, expanding from the east and south to the north and west of the QTP. NH3 was the main source of atmospheric N losses (over 80%) while the direct discharge of manure was the main source of water N losses. Structural equation modeling (SEM) showed that chemical fertilizer caused the largest driving effect on atmospheric N losses, and the total output value of agriculture and forestry was the main driver of water N losses. Uneven distribution of crop production and livestock contributed to the aggravation of N losses. Over 70% of counties had grater manure N excretion than crops could take up, and large proportion of manure could not be returned to the field. More than 90% of the counties used grater amount of chemical fertilizer N than crops could take up, indicating that livestock manure has not yet fully replaced chemical fertilizer N. The results provide effective guidance and support for N utilization and management of livestock in agricultural and pastoral areas.


Asunto(s)
Ganado , Nitrógeno , Animales , Humanos , Nitrógeno/análisis , Fertilizantes , Tibet , Agricultura , Estiércol , Productos Agrícolas , Agua , China
14.
Front Pediatr ; 10: 1051432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523398

RESUMEN

Rapid Automatized Naming (RAN) tests have been well-documented to predict reading abilities as well as a variety of neurobiological disorders (e.g., developmental dyslexia). Traditional measures of RAN tests only take into account the naming time and accuracy and cannot reflect temporal-spatial features during RAN tests. Although the eye tracking approach appears to be a promising tool for characterizing the essential temporal-spatial characteristics of RAN tests, no research has been conducted to investigate whether and how gender, age, and task-type alter those characteristics. Additionally, no study has examined eye movements during a Chinese adaptation of RAN in order to expand the applicability of RAN to developmental dyslexia in Chinese. To address the concerns stated above, this article recruited 408 children (206 males, aged 7-11 years) and adopted eight measures to quantify features of eye movements during a Chinese adaptation of RAN. Findings showed that: (1) eight eye-movement measures had the main effects of task-type and age, but only five of them had the main effect of gender (in particular, females outperformed males); (2) RAN abilities observed by eight eye-movement measures initially developed quickly before the age of 9, and then entered a relatively sluggish development phase; (3) non-alphanumeric RAN tasks generally required higher mental load (implying more fixation counts, saccade counts, and regression counts, smaller average saccade amplitude, fixation duration fluctuation and saccade amplitude fluctuation, and longer average fixation duration and total time of naming) than alphanumeric ones; (4) there were significant correlations between total time of naming (a widely-used behavioral parameter) and other eye-movement measures; and (5) there were significant correlation between eight eye-movement measures and three attention-related skills observed from a number cancellation task. The current study might offer some perspectives on the understanding of normative data of eye movements during RAN in Chinese school-aged children, as well as the applications (e.g., developmental dyslexia) associated with RAN.

15.
J Insect Sci ; 22(6)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36449010

RESUMEN

The glucosinolates (GLs) and myrosinase defensive systems in cruciferous plants were circumvented by Plutella xylostella using glucosinolate sulfatases (PxGSSs) during pest-plant interaction. Despite identifying three duplicated GSS-encoding genes in P. xylostella, limited information regarding their spatiotemporal and induced expression is available. Here, we investigated the tissue- and stage-specific expression and induction in response to GLs of PxGSS1 and PxGSS2 (PxGSS1/2) at the protein level, which shares a high degree of similarity in protein sequences. Western blotting (WB) analysis showed that PxGSS1/2 exhibited a higher protein level in mature larvae, their guts, and gut content. A significantly high protein and transcript levels of PxGSS1/2 were also detected in the salivary glands using WB and qRT-PCR. The immunofluorescence (IF) and immunohistochemistry (IHC) results confirmed that PxGSS1/2 is widely expressed in the larval body. The IHC was more appropriate than IF when autofluorescence interference was present in collected samples. Furthermore, the content of PxGSS1/2 did not change significantly under treatments of GL mixture from Arabidopsis thaliana ecotype Col-0, or commercial ally (sinigrin), 4-(methylsulfinyl)butyl, 3-(methylsulfinyl)propyl, and indol-3-ylmethyl GLs indicating that the major GLs from leaves of A. thaliana Col-0 failed to induce the expression of proteins for both PxGSS1 and PxGSS2. Our study systemically characterized the expression properties of PxGSS1/2 at the protein level, which improves our understanding of PxGSS1/2-center adaptation in P. xylostella during long-term insect-plant interaction.


Asunto(s)
Glucosinolatos , Lepidópteros , Animales , Inmunoglobulinas , Secuencia de Aminoácidos , Larva/genética , Sulfatasas
16.
Front Physiol ; 13: 1013092, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338470

RESUMEN

Glycoside hydrolase family 1 (GH1) members exhibit a broad substrate spectrum and play important roles in insect-plant interactions, such as the defensive ß-glucosidase and ß-thioglucosidase (so-called myrosinase). However, knowledge about the expression profiling and function of glycoside hydrolase family 1 members in a specialist pest of crucifers Plutella xylostella is still limited. In this study, 13 putative glycoside hydrolase family 1 members of P. xylostella were identified based on the sequence characteristics, while no myrosinase activity was detectable in P. xylostella using gas chromatography-mass spectrometry (GC-MS). Expression profiling of these glycoside hydrolase family 1 members identified the midgut-specific gene Px008848 that is induced by host plant. Further experiments revealed that the in vitro expressed Px008848 protein had ß-glucosidase activity and the survival rate of the larvae feeding on wounded Arabidopsis thaliana leaves declined when leaves were treated with purified Px008848 protein. When CRISPR/Cas9-based homozygous mutant larvae of Px008848 and wild-type larvae were respectively transferred onto the A. thaliana, the larval survival rate of the mutant larvae was significantly higher than that of the wild-type individuals. Our work showed that certain insect glycoside hydrolase family 1 gene may have negative effect on the development of larvae feeding on the host plant, which broadened our understandings on the evolutionary function of this gene family in the insect-plant interaction.

17.
Front Hum Neurosci ; 16: 945406, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36034115

RESUMEN

Numerous studies have focused on the understanding of rapid automatized naming (RAN), which can be applied to predict reading abilities and developmental dyslexia in children. Eye tracking technique, characterizing the essential ocular activities, might have the feasibility to reveal the visual and cognitive features of RAN. However, traditional measures of eye movements ignore many dynamical details about the visual and cognitive processing of RAN, and are usually associated with the duration of time spent on some particular areas of interest, fixation counts, revisited fixation counts, saccadic velocities, or saccadic amplitudes. To cope with this drawback, we suggested an entropy-based method to measure eye movements for the first time, which first mapped eye movements during RAN in a time-series and then analyzed the time-series by a proper definition of entropy from the perspective of information theory. Our findings showed that the entropy was more sensitive to reflect small perturbation (e.g., rapid movements between focuses in the presence of skipping or omitting some stimulus during RAN) of eye movements, and thus gained better performance than traditional measures. We also verified that the entropy of eye movements significantly deceased with the age and the task complexity of RAN, and significantly correlated with traditional eye-movement measures [e.g., total time of naming (TTN)] and the RAN-related skills [e.g., selective attention (SA), cognitive speed, and visual-motor integration]. Our findings may bring some new insights into the understanding of both RAN and eye tracking technique itself.

18.
J Agric Food Chem ; 70(36): 11179-11191, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36043275

RESUMEN

Numerous herbivores orally secrete defense compounds to detoxify plant toxins. However, little is known about the role of orally secreted enzymes by a specialized pest, Plutella xylostella, in the detoxification of plant defense compounds. Three glucosinolate sulfatases (GSSs) or two sulfatase-modifying factors (SUMF1s) mutant strains were established on the basis of CRISPR/Cas9 technology to validate the existence of a species-specific GSSs-SUMF1s system. In comparison to the bioassay data from mutant strains of GSS1/GSS2 or SUMF1a/SUMF1b, GSS3 had a minimal role because no significant change was found in GSS3-/- under different feeding contexts. Antibody-based technologies were used to examine GSSs-related deficient strains, and the results showed that the GSS1 protein was primarily released through larval oral secretion. On the basis of high-performance liquid chromatography, we found that GSS1 was secreted to pre-desulfate the typical plant defensive glucosinolates known as 4-(methylsulfinyl)butyl glucosinolate (4MSOB-GL) to suppress the production of the toxic substance, which is referred to as pre-detoxification strategy. These findings highlighted that the GSSs-SUMF1s system is the key factor for counteradaptation of P. xylostella to cruciferous plants, which strengthens the concept that herbivores deploy pre-detoxification strategies to disrupt the plant chemical defenses to facilitate the colonization process.


Asunto(s)
Glucosinolatos , Mariposas Nocturnas , Animales , Glucosinolatos/metabolismo , Herbivoria , Larva/metabolismo , Mariposas Nocturnas/metabolismo , Sulfatasas/genética
19.
J Environ Manage ; 318: 115623, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35777154

RESUMEN

Nitrogen (N) plays a vital role in the development of crop production and animal husbandry in agricultural and pastoral areas. However, the irrational utilization of N resources and subsequent environmental issues with rapid economic development has attracted wide public attention. Coordinating the economy-N-resource-environment (ENRE) system is of great importance for regional sustainable development. In this study, the dynamics of the ENRE system of a typical agricultural and pastoral area on the Qinghai-Tibet Plateau (QTP) were simulated using the VENSIM software from 1998 to 2018. Four typical scenarios (current development scenario, economic development scenario, environment protection scenario and resource optimization scenario) are established to assess the sustainability level and the coupling coordination degrees (CCDs) of the three subsystems, i.e., the economy, N-resource and environment subsystems from 2019 to 2030. Our study indicates that the N flow-based system dynamics (SD) model connects the different subsystems of the ENRE system together well and allows different scenario simulations. From 2019 to 2030, the ENRE system is at a weak sustainability level during the simulation period, and the three subsystems are at slightly unbalanced stages of development in terms of CCD level. The sustainability and CCD levels of the four examined scenarios are as follows: resource optimization scenario > economic development scenario > environment protection scenario >current development scenario, with average values of 0.45, 0.37; 0.42, 0.36; 0.41, 0.35; and 0.39, 0.34, respectively. Under the resource optimization scenario, reducing N inputs to food production and consumption and reducing the planting area of cash crops can effectively improve the N use efficiency of the food chain in the N-resource subsystem (15.34% from 2019 to 2030 on average). Our results provide a reference for promoting sustainable development and formulating policies in agricultural and pastoral regions.


Asunto(s)
Conservación de los Recursos Naturales , Nitrógeno , Crianza de Animales Domésticos , Animales , China , Desarrollo Económico , Tibet
20.
Aging Cell ; 21(7): e13645, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35656861

RESUMEN

Most neurodegenerative diseases such as Alzheimer's disease are proteinopathies linked to the toxicity of amyloid oligomers. Treatments to delay or cure these diseases are lacking. Using budding yeast, we report that the natural lipid tripentadecanoin induces expression of the nitric oxide oxidoreductase Yhb1 to prevent the formation of protein aggregates during aging and extends replicative lifespan. In mammals, tripentadecanoin induces expression of the Yhb1 orthologue, neuroglobin, to protect neurons against amyloid toxicity. Tripentadecanoin also rescues photoreceptors in a mouse model of retinal degeneration and retinal ganglion cells in a Rhesus monkey model of optic atrophy. Together, we propose that tripentadecanoin affects p-bodies to induce neuroglobin expression and offers a potential treatment for proteinopathies and retinal neurodegeneration.


Asunto(s)
Amiloide , Lípidos , Agregación Patológica de Proteínas , Animales , Ratones , Enfermedad de Alzheimer , Amiloide/efectos de los fármacos , Amiloide/metabolismo , Péptidos beta-Amiloides/efectos de los fármacos , Péptidos beta-Amiloides/metabolismo , Dioxigenasas , Hemoproteínas , Lípidos/farmacología , Mamíferos , Neuroglobina/efectos de los fármacos , Neuroglobina/metabolismo , Cuerpos de Procesamiento/efectos de los fármacos , Cuerpos de Procesamiento/metabolismo , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Células Ganglionares de la Retina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...